Integration by Substitution Examples with Explanation and PDF

0

The Method of substitution is a very important part of Calculus. Substitution is the counterpart to the chain rule for differentiation. Here we are going to solve the problem using the substitution method with a step-by-step explanation. We are also providing PDFs for offline practice.

Integration by Substitution


Problem 1:

`\int \frac { ( 1 + x ) e ^ { x } } { \cos ^ { 2 } ( x e ^ { x } ) } d x`

Solution:

Let,

`x e ^ { x }=u`
`\Rightarrow \frac { d } { d x } ( x e ^ { x } ) = \frac { d u } { d x }`
`\Rightarrow e ^ { x } \frac { d } { d x } ( x ) + x \frac { d } { d x } ( e ^ { x } ) = \frac { d u } { d x }`

[Note: here we used the formula `\frac { d } { d x } ( u v ) = u \frac { d v } { d x } + v \frac { d u } { d x }`]

`\Rightarrow e ^ { x } + x e ^ { x } = \frac { d u } { d x }`

[Note: here, `\frac { d } { d x } ( x ) = 1` and `\frac { d} { d x } ( e ^ { x } ) = e ^ { x }`]

`\Rightarrow ( 1 + x ) e ^ { x } = \frac { d u } { d x }`
`\Rightarrow ( 1 + x ) e ^ { x } \cdot d x = d u`

Now,

`\int \frac { ( 1 + x ) e ^ { x } } { \cos ^ { 2 } ( x e ^ { x } ) } d x`


`= \int \frac { ( 1 + x ) e ^ { x } \cdot d x } { \cos ^ { 2 } ( x e ^ { x } ) }`
`= \int \frac { d u } { \cos ^ { 2 } u }`
`= \int \sec ^ { 2 } u d u`
`= \tan u + c`

[Note: Formula: `\int \sec ^ { 2 } x d x = \tan x + c`]

`\int \sec ^ { 2 } x d x = \tan x + c`

Answer: `\int \sec ^ { 2 } x d x = \tan x + c`

Here is the handwritten solution of this math:

substitution problem solution

Problem 2:

`\int \frac { e ^ { m \tan ^ { - 1 } x } } { 1 + x ^ { 2 } } d x`

Solution:

let,

`m \tan ^ { - 1 } x = u`
`\Rightarrow m \frac { 1 } { 1 + x ^ { 2 } } = \frac { d u } { d x }`

[Note: Formula used here, `\frac { d } { d x } ( \tan ^ { - 1 } x ) = \frac { 1 } { 1 + x ^ { 2 } }`]

`\Rightarrow \frac { m } { 1 + x ^ { 2 } } d x = d u`
`\Rightarrow  \frac { 1 } { 1 + x ^ { 2 } } d x = \frac { 1 } { m } d u`

Now,

`\int \frac { e ^ { m \tan ^ { - 1 } x } } { 1 + x ^ { 2 } } d x`
`= \int \frac { 1 \cdot d x } { 1 + x ^ { 2 } } ( e ^ { mtan - 1 } x )`
`= \frac { 1 } { m } \int e ^ { u } d u`
`= \frac { 1 } { m } e ^ {u} + c`
`= \frac { 1 } { m } e ^ { mtan ^ { - 1 } x } + c`

Answer: `\frac { 1 } { m } e ^ { mtan ^ { - 1 } x } + c`

Here is the handwritten solution of this math:

Integration by Substitution

You can find other Math Problems with the proper solutions in the PDF file. Download PDF and try them to understand. Comment below if you face any problem understanding.
Tags

Post a Comment

0 Comments
* Please Don't Spam Here. All the Comments are Reviewed by Admin.
Post a Comment (0)

buttons=(Accept !) days=(20)

Our website uses cookies to enhance your experience. Learn More
Accept !