The Method of substitution is a very important part of Calculus. Substitution is the counterpart to the chain rule for differentiation. Here we are going to solve the problem using the substitution method with a step-by-step explanation. We are also providing PDFs for offline practice.
Problem 1:
∫(1+x)excos2(xex)dx
Solution:
Let,
xex=u
⇒ddx(xex)=dudx
⇒exddx(x)+xddx(ex)=dudx
[Note: here we used the formula ddx(uv)=udvdx+vdudx]
⇒ex+xex=dudx
[Note: here, ddx(x)=1 and ddx(ex)=ex]
⇒(1+x)ex=dudx
⇒(1+x)ex⋅dx=du
Now,
∫(1+x)excos2(xex)dx
=∫(1+x)ex⋅dxcos2(xex)
=∫ducos2u
=∫sec2udu
=tanu+c
[Note: Formula: ∫sec2xdx=tanx+c]
∫sec2xdx=tanx+c
Answer: ∫sec2xdx=tanx+c
Here is the handwritten solution of this math:
Problem 2:
∫emtan-1x1+x2dx
Solution:
let,
mtan-1x=u
⇒m11+x2=dudx
[Note: Formula used here, ddx(tan-1x)=11+x2]
⇒m1+x2dx=du
⇒
⇒m11+x2=dudx
[Note: Formula used here, ddx(tan-1x)=11+x2]
⇒m1+x2dx=du
⇒
Now,
\int \frac { e ^ { m \tan ^ { - 1 } x } } { 1 + x ^ { 2 } } d x
= \int \frac { 1 \cdot d x } { 1 + x ^ { 2 } } ( e ^ { mtan - 1 } x )
= \frac { 1 } { m } \int e ^ { u } d u
= \frac { 1 } { m } e ^ {u} + c
= \frac { 1 } { m } e ^ { mtan ^ { - 1 } x } + c
\int \frac { e ^ { m \tan ^ { - 1 } x } } { 1 + x ^ { 2 } } d x
= \int \frac { 1 \cdot d x } { 1 + x ^ { 2 } } ( e ^ { mtan - 1 } x )
= \frac { 1 } { m } \int e ^ { u } d u
= \frac { 1 } { m } e ^ {u} + c
= \frac { 1 } { m } e ^ { mtan ^ { - 1 } x } + c
Answer: \frac { 1 } { m } e ^ { mtan ^ { - 1 } x } + c
Here is the handwritten solution of this math:
Here is the handwritten solution of this math:
You can find other Math Problems with the proper solutions in the PDF file. Download PDF and try them to understand. Comment below if you face any problem understanding.